

HDS3

WEGEVENTIL MIT MAGNETBETÄTIGUNG

350 bar 80 l/min

TECHNISCHER KATALOG

EINLEITUNG

HDS3 Ventile sind direktgesteuerte Wegeventile mit Magnetbetätigung, deren Anschlussbild den Normen ISO 4401-03 entspricht.

Diese Ventile werden mit Zink-Nickel-Beschichtung geliefert. Die Zink-Nickel-Beschichtung macht diese Ventile geeignet für die mobilen und Umweltanwendungen, die einen besseren Schutz erfordern.

Diese Ventile werden standardmäßig mit einer Salznebelbeständigkeit bis zu 240 Stunden geliefert. Mit WK*-Spulen kann eine Salznebelbeständigkeit bis zu 600 Stunden erreicht werden (Tests werden gemäß UNI EN ISO 9227 Standard durchgeführt und die Testergebnisse gemäß UNI EN ISO 10289 Standard ermittelt).

Der Ventilkörper besteht aus hochfestem Gusseisen und verfügt über Durchflusskanäle, die entwickelt wurden, um die Druckverluste zu minimieren.

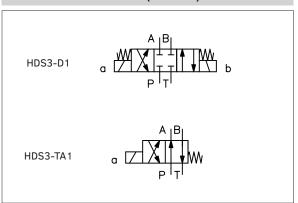
HYDRAULISCHE DRUCKMEDIEN

Verwenden Sie Hydraulikflüssigkeiten auf Mineralölbasis Typ HL oder HM nach ISO 6743-4. Für diese Flüssigkeiten verwenden Sie Dichtungen aus NBR (Standard - Code N). Für Flüssigkeiten vom Typ HFDR (Phosphorester) verwenden Sie Dichtungen aus FPM (Code V). Wenn Sie andere Druckmedien verwenden, zum Beispiel HFA, HFB, HFC, wenden Sie sich bitte an unser technisches Büro.

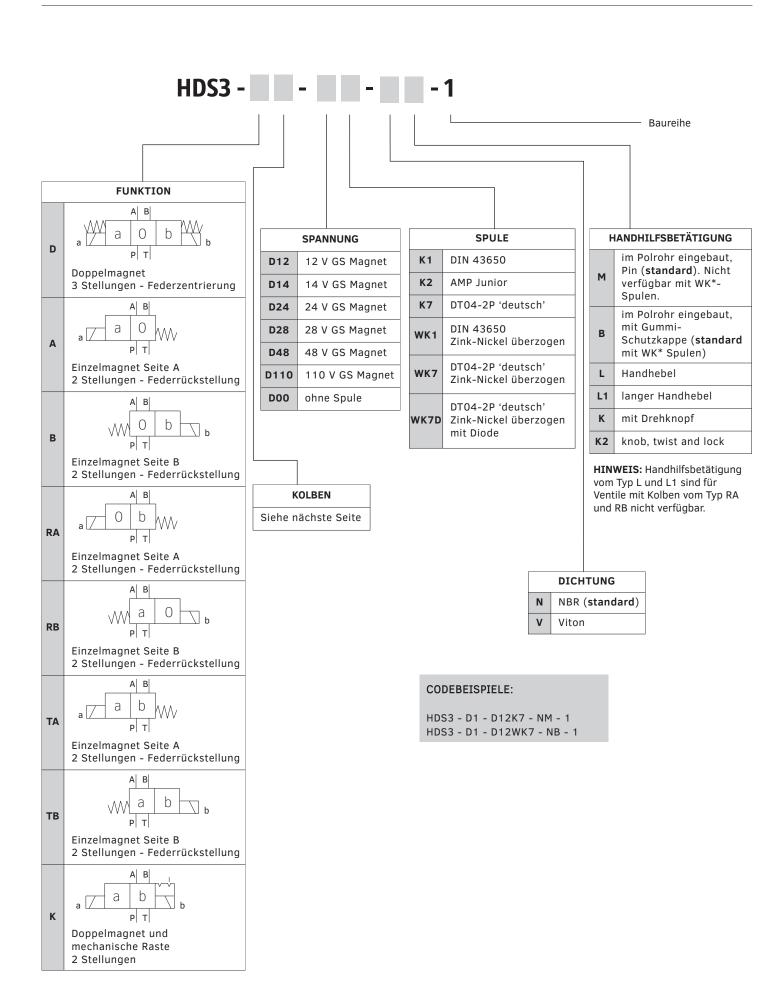
Der Betrieb mit Flüssigkeitstemperaturen über 80 °C (180 °F) führt zum schnellen Verfall der Qualität der Dichtungen und der physikalischen und chemischen Merkmale der Flüssigkeit.

Aus Sicherheitsgründen werden Temperaturen über 55 $^{\circ}$ C (130 $^{\circ}$ F) nicht empfohlen.

BETRIEBSPARAMETER


MAXIMALER BETRIEBSDRUCK —	P - A - B Anschlüsse	350 bar	5000 psi
BETRIEBSDRUCK —	T Anschluss	210 bar	3000 psi
VOLUMENSTROM		80 l/min	21,1 gpm
ANSCHLUSSBILD		ISO 4401-03-02-0-05 NFPA D03	

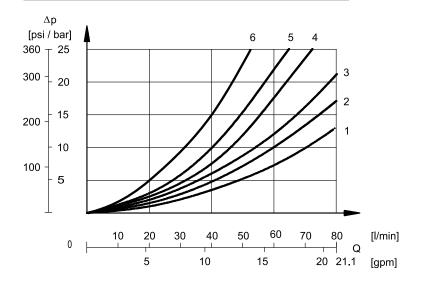
SPRUNG-	0 → 100%	50 ms
ANTWORT	100 →0%	40 ms


GEWICHT	Einzelmagnet	1,5 kg	3,3 lbs
GEWICHI	Doppelmagnet	2 kg	4,4 lbs

TEMPERATUR-	Umgebung	-20 bis +54 °C	-4 bis+130 °F
BEREICHE	Flüssigkeit	-20 bis+82 °C	-4 bis+180 °F
FLÜSSIGKEITS-	Bereich	10-400 cSt	60-1900 SUS
VISKOSITÄT	empfohlen	25 cSt	120 SUS
KONTAMINATION DER FLÜSSIGKEIT		ISO 4406:1999 Klasse 20/18/15	

HYDRAULISCHE SYMBOLE (TYPISCH)

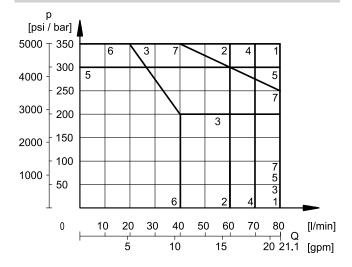
FUNKTION D	FUNKTION A	FUNKTION B
		A B b b b
1	1	1 WTTTT 2 WTTTT 3 WTTTT 4 WTTTT
	FUNKTION RA	FUNKTION RB
7	a O A B b W	A B O b
10	1 7 T T W	1 WX 7 1 1
	1	2 W
12	3 7 T T W	3 WATTE
17 W 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 7 X X W	4 W
18		
19		
21	FUNKTION TA	FUNKTION TB
22	A B	A B
23		W a b
FUNKTION K	1	1 W T T T T T T T T T T T T T T T T T T
	3 TTTTW	3 WITTT
	4	4 W
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5	5 WTTTT


HYDRECO

Die Volumenstromkennlinien wurden mit Mineralöl mit einer Viskosität von 36 cSt (170 SUS) und einem 24 GS Ventil bei 50 °C (122 °F) durchgeführt; Die Δp -Werte wurden zwischen P und T Anschlüssen gemessen.

DRUCKVERLUSTE Ap-Q

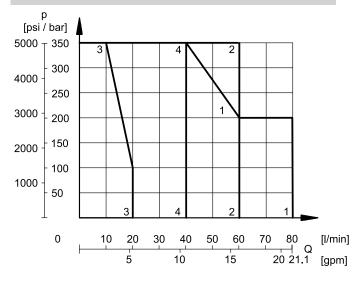
ANGEZOGENE POSITION


FLÜSSIGKEITSRICHTUI				UNG
TYP	P→A	P→B	A→T	B→T
	DIA	GRAMMI	KENNLIN	IIEN
D1, A1, B1	2	2	3	3
D2, A2, B2	1	1	3	3
D3, A3, B3, RA3, RB3	3	3	1	1
D4, A4, B4, RA4, RB4	5	5	5	5
D5	2	1	3	3
D6	2	2	3	1
D7, D8	4	5	5	5
D9	2	2	3	3
D10	1	3	1	3
D11	2	2	1	3
D12, D17, D19	2	2	3	3
D18	1	2	3	3
D20, D22	1	5	2	
D21, D23	5	1		2
TA1, TB1	3	3	3	3
TA2, TB2	2	2	2	2
TA3, TB3	3	3		
K1, K2, K3	2	2	2	2

NULL POSITION

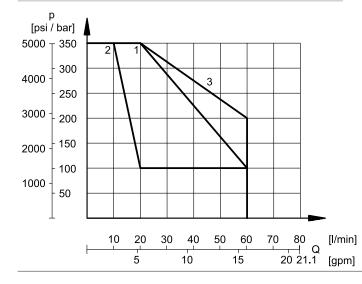
	FLÜSSIGKEITSRICHTUNG				ì
TYP	P→A	P→B	A→T	В→Т	P→T
	1	FLÜSSIG	KEITSRI	CHTUNG	ì
D2, A2, B2					2
D3, A3, B3, RA3, RB3			3	3	
D4, A4, B4, RA4, RB4					3
D5		4			
D6				3	
D7, D8			6	6	3
D10	3	3			
D11			3		
D18	4				
D22, D23				6	

EINSATZBEREICHE - STANDARDBETRIEB



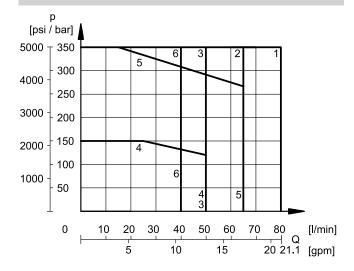
^{*} Leistung von einem Ventil, das Leitungen A und B hat, von denen eine zur Kolbenseite und die andere zur Kolbenstangenseite von einem Zylinder mit Flächenverhältnis 2:1 verbunden werden.

TYP	KENNLINIE		
ITP	P→A	$P \rightarrow B$	
D1, A1, B1	1	1	
D2, A2, B2	2	2	
D3, A3, B3	3	3	
D4, A4, B4	4	4	
D5	5	5	
D6	4	6	
D7	4	4	
D8	4	4	
D9	1	1	
D10	1	1	
D11	4	6	
D12	1	1	
D17	4	4	


TYP	KENN	LINIE
1115	P→A	P→B
D18	5	5
D19	4	4
D20	6*	6
D21	6	6*
D22, D23	6	6
TA1, TB1	1	1
TA2, TB2	7	7
TA3, TB3	2	2
TA4	1	-
K1	1	1
K2	7	7
К3	1	1

EINSATZBEREICHE - UMGEKEHRTE KOLBEN

TYP	KENNLINIE
RA1	1
RA2	2
R3	3
RA4	4


EINSATZBEREICHE - 3-ANSCHLÜSSE-BETRIEB

TYP	KENNLINIE
TA1 Gegendruck in A TB1 Gegendruck in B	1
TA2 Gegendruck in A TB2 Gegendruck in B	1
TA1 Gegendruck in B TB1 Gegendruck in A	2
TA2 Gegendruck in B TB2 Gegendruck in A	3

EINSATZBEREICHE - WS GLEICHRICHTERANSCHLÜSSE

TYP	KENNLINIE		
ITP	P→A	$P \rightarrow B$	
D1, A1, B1	2	2	
D2, A2, B2	3	3	
D3, A3, B3	4	4	
D4, A4, B4	2	2	
D9	5	5	
TA1, TB1	6	6	
K1	1	1	

ELEKTRISCHE MERKMALE

Magnete bestehen aus zwei Teilen: Polrohr und Magnetspule. Der in das Ventilgehäuse eingeschraubte Polrohr enthält den verschleißfrei in Öl laufenden Anker. Der mit dem rücklaufenden Öl in Verbindung stehende Innenteil sichert eine gute Wärmeabführung.

Die Magnetspule ist am Polrohr mit einer Kontermutter gesichert, und kann um 360° je nach dem Freiraum gedreht werden.

Es ist möglich, D48- und D110-Spulen mit Wechselstrom (50 oder 60 Hz) zu versorgen, indem Stecker mit eingebautem Graetz Brückengleichrichter verwendet werden. In diesem Fall betrachten Sie eine Reduzierung der Einsatzbereiche.

Die Spule WK7D enthält eine Suppressordiode zum Schutz vor Spannungsspitzen. In der Umschaltphase reduziert die Schutzdiode die von der Wicklung abgegebene Energie, indem sie die Spannung bei der Spule D12 auf 31,4 V und bei der Spule D24 auf 58,9 V begrenzt.

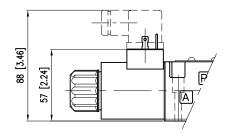
Bitte verwenden Sie die in der Tabelle unten enthaltenen Spulencodes, um die Ersatzteile zu bestellen.

EINSCHALTZEIT	100%		
MAX. EINSCHALTFREQ	10.000 Zyklen/Stunde		
ÄNDERUNG DER VERSO SPANNUNG	± 10% Vnenn		
ELEKTROMAGNETISCH VERTRÄGLICHKEIT (EN	nach den Normen 2014/30/EU		
NIEDRIGE SPANNUNG	nach den Normen 2014/35/EU		
SCHUTZ- KLASSE FÜR	Kupferdraht	Klasse H (180 °C)	
ISOLIERUNG	Spule	Klasse F (155 °C)	

(Werte ± 10%)

	Nenn- spannung	Widerstand bei 20°C [Ω]	aufgen. Strom. [A]	aufgen. Leistung [W]	Spulencode					
	[V]				К1	К2	К7	WK1	WK7	WK7D
D12	12	4,4	2,72	32,7	1903080	1903100	1902940	3984000001	3984000101	3984000111
D14	14	7,2	1,93	27	1903086					
D24	24	18,6	1,29	31	1903081	1903101	1902941	3984000002	3984000102	3984000112
D26	26,4	21,8	1,21	32				3984000003	3984000103	
D28	28	26	1,11	31	1903082					
D48	48	78,6	0,61	29,5	1903083					
D110	110	423	0,26	28,2	1903464					

HDS3 - Spulenanschlüsse und IP-Schutzgrad

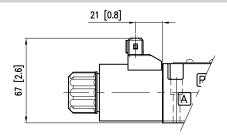


Die IP-Schutzklasse ist gemäß EMC 2014/30 EU und wird gewährleistet, nur wenn das Ventil und die Stecker zu einer gleichwertigen IP-Schutzklasse gehören und fachgerecht installiert sind.

WK1, WK7 und WK7D Spulen erhalten einen besseren IP-Schutzgrad als die Standardspulen dank der Zink-Nickel-Beschichtung und einiger konstruktiven Maßnahmen. Die Ventile mit diesen Spulen erreichen eine Salznebelbeständigkeit von 600 Stunden (Tests werden gemäß UNI EN ISO 9227 Standard durchgeführt und die Testergebnisse gemäß UNI EN ISO 10289 Standard ermittelt).

Die Stecker sind nicht im Lieferumfang enthalten. Stecker für Spulen vom Typ K1 und WK1 können separat bestellt werden.

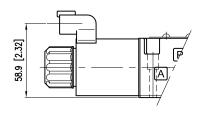
K1



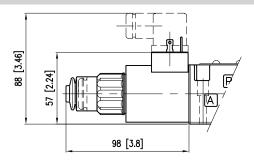
DIN 43650 (EN 175301-803)

Stecker vom Typ ISO 4400 / DIN 43650 (EN 175301-803).

IP-Schutzklasse des elektrischen Anschlusses: IP65 IP-Schutzklasse des gesamten Ventils: IP65


K2

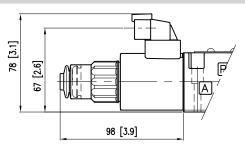
AMP Junior


IP-Schutzklasse des elektrischen Anschlusses: IP65/IP67 IP-Schutzklasse des gesamten Ventils: IP65

K7

DEUTSCH DT04, STECKER

IP-Schutzklasse des elektrischen Anschlusses: IP65/IP67 IP-Schutzklasse des gesamten Ventils: IP65 WK1


DIN 43650 (EN 175301-803)

Zink-Nickel überzogene Spule.

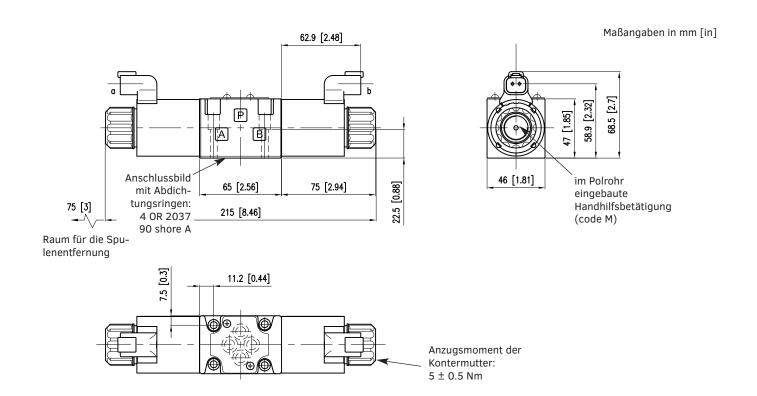
IP-Schutzklasse des elektrischen Anschlusses: IP66 IP-Schutzklasse des gesamten Ventils: IP66

Der Pin für die Handhilfsbetätigung hat eine Gummi-Schutzkappe (Code B).

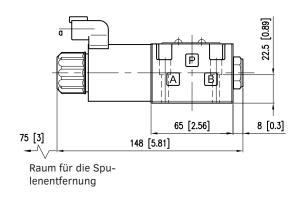
WK7 / WK7D

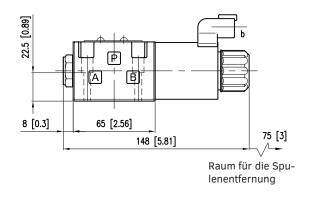
DEUTSCH DT04, STECKER

Zink-Nickel überzogene Spule.


IP-Schutzklasse des elektrischen Anschlusses: IP66/IP68/IP69 -

IP-Schutzklasse des gesamten Ventils: IP66/IP68/IP69 IP-Schutzklasse nach ISO 20653: IP69K


Der Pin für die Handhilfsbetätigung hat eine Gummi-Schutzkappe (Code B).


HDS3 DOPPELMAGNET (K7 SPULE)

HDS3 EINZELMAGNET SEITE A (K7 SPULE)

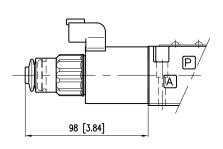
HDS3 EINZELMAGNET SEITE B (K7 SPULE)

Besfestigungsschrauben:

4 Schrauben M5x30 - ISO 4762 - Anzugsmoment 5 Nm (A 8.8)

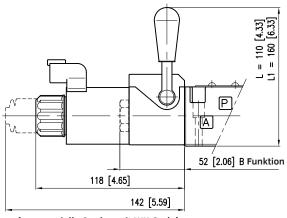
Gewindebohrung: M5x10

HDS3 - Handhilfsbetätigung


Das Standardventil hat Pins für die Handhilfsbetätigung, die im Polrohr eingebaut sind. Diese Betätigung muss mit einem angemessenen Werkzeug aktiviert werden und man muss darauf achten, die Lauffläche nicht zu beschädigen.

Weitere Typologien von Handhilfsbetätigung sind verfügbar, indem Sie der Bestellbezeichnung den entsprechenden Code hinzufügen.

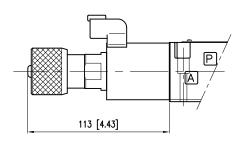
HYDRECO


MIT GUMMI-SCHUTZKAPPE

Code B

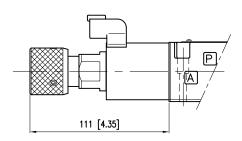
HANDHEBEL

Code L, L1


(nur spezielle Spulen mit WK Code)

Der Handhebel befindet sich immer auf Seite A, mit Ausnahme von den Ventilen vom Typ HDS3-TB.

Ventile mit 'WK' Spulen sind mit einer Gummi-Schutzkappe für das Polrohr ausgestattet.


MIT DREHKNOPF

Code K

KNOPF, TWIST AND LOCK

Code K2

IP-SCHUTZKLASSE - HINWEISE

Der technische Standardbezug für IP-Schutzklasse ist IEC 60529, der die durch die Ausrüstungen und die Schaltschränke gegen Eindringen bereitgestellte Schutzklasse klassifiziert und bewertet.

Die erste Ziffer (6) bezieht sich auf den Schutz gegen Feststoffpartikel (Körperteile, Staub, usw.).

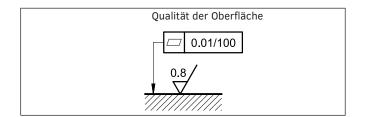
Die zweite Ziffer der IP-Schutzklasse bezieht sich auf den Schutz gegen den Flüssigkeitseintritt. Sie zeigt drei Typologien von Witterungseinflüssen, gegen die Schutz geboten wird:

Kennziffern von 1 bis $6 \rightarrow$ Wasserstrahlen.

Kennziffern 7 und 8 → Untertauchen.

Kennziffer 9 → Wasserstrahlen unter erhöhtem Druck und erhöhter Temperatur.

Damit umfasst die Schutzart IP66 alle niedrigeren Schutzarten, Schutzart IP68 umfasst IP67 aber nicht IP66 und niedrigere Arten. Dagegen umfasst IP69 keine Schutzart. Wenn das Gerät mehreren Schutzarten entspricht, ist es notwendig, die beiden Kennziffern, getrennt durch einen Schrägstrich, immer anzugeben.


(z.B. Die Kennzeichnung eines gegen zeitweiliges Untertauchen und Wasserstrahlen geschützten Gerätes ist IP66/IP68).

INSTALLATION

Diese Ventile können in beliebiger Lage eingebaut werden, ohne das reibungslose Funktionieren zu gefährden.

Stellen sie sicher, dass sich keine Luft im Hydrauliksystem befindet.

Die Ventile werden mit Inbusschrauben oder Zugstangen auf einer ebenen Fläche befestigt, deren Ebenheits- und Rauheitswerte gleich oder besser sind als die durch die entsprechenden Symbole angegebenen Werte. Wenn Mindestwerte nicht eingehalten werden, kann die Flüssigkeit zwischen Ventil und Auflagefläche austreten.

unterstützt durch ein weltweites Netzwerk

KONTAKT INFORMATIONEN

EMEA

DEUTSCHLAND Hydreco Hydraulics GmbH, Helmstedt (NI)

ITALIEN Hydreco Hydraulics Italia Srl, Vignola (MO)

ITALIEN Hydreco Hydraulics Italia Srl, Parma (PR)

ITALIEN Hydreco Srl, San Cesario S/P (MO)

NORWEGEN Hydreco Hydraulics Norway AS, Nittedal

UK Hydreco Hydraulics Ltd, Poole, Dorset

+49 535155860

\$\&\ +39 059 7700411\$
\$\&\ +39 0521 1830520\$
\$\&\ +39 059 330091\$

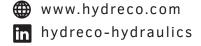
+39 059 330091 +47 22909410

+44 (0) 1202 627500

info@hydreco.de

sales-it@hydreco.com
sales-it@hydreco.com

cylinders@hydreco.com post-no@hydreco.com


info-uk@hydreco.com

AMERIKA

NORD-/LATEIN- Hydreco Inc / Continental Hydraulics Inc, Shakopee (MN) 📞 +1 952 895 6400 🖂 sales@conthyd.com

APAC

